Biochemical and mutational analyses of AcuA, the acetyltransferase enzyme that controls the activity of the acetyl coenzyme a synthetase (AcsA) in Bacillus subtilis.

نویسندگان

  • Jeffrey G Gardner
  • Jorge C Escalante-Semerena
چکیده

The acuABC genes of Bacillus subtilis comprise a putative posttranslational modification system. The AcuA protein is a member of the Gcn5-related N-acetyltransferase (GNAT) superfamily, the AcuC protein is a class I histone deacetylase, and the role of the AcuB protein is not known. AcuA controls the activity of acetyl coenzyme A synthetase (AcsA; EC 6.2.1.1) in this bacterium by acetylating residue Lys549. Here we report the kinetic analysis of wild-type and variant AcuA proteins. We contrived a genetic scheme for the identification of AcuA residues critical for activity. Changes at residues H177 and G187 completely inactivated AcuA and led to its rapid turnover. Changes at residues R42 and T169 were less severe. In vitro assay conditions were optimized, and an effective means of inactivating the enzyme was found. The basic kinetic parameters of wild-type and variant AcuA proteins were obtained and compared to those of eukaryotic GNATs. Insights into how the isolated mutations may exert their deleterious effect were investigated by using the crystal structure of an AcuA homolog.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Bacillus subtilis, the sirtuin protein deacetylase, encoded by the srtN gene (formerly yhdZ), and functions encoded by the acuABC genes control the activity of acetyl coenzyme A synthetase.

This report provides in vivo evidence for the posttranslational control of the acetyl coenzyme A (Ac-CoA) synthetase (AcsA) enzyme of Bacillus subtilis by the acuA and acuC gene products. In addition, both in vivo and in vitro data presented support the conclusion that the yhdZ gene of B. subtilis encodes a NAD(+)-dependent protein deacetylase homologous to the yeast Sir2 protein (also known as...

متن کامل

Requirement for the enzymes acetoacetyl coenzyme A synthetase and poly-3-hydroxybutyrate (PHB) synthase for growth of Sinorhizobium meliloti on PHB cycle intermediates.

We have identified two Sinorhizobium meliloti chromosomal loci affecting the poly-3-hydroxybutyrate degradation pathway. One locus was identified as the gene acsA, encoding acetoacetyl coenzyme A (acetoacetyl-CoA) synthetase. Analysis of the acsA nucleotide sequence revealed that this gene encodes a putative protein with a molecular weight of 72,000 that shows similarity to acetyl-CoA synthetas...

متن کامل

Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA.

The Bacillus subtilis acsA (acetyl coenzyme A synthetase) and acuABC (acetoin utilization) genes were previously identified in the region downstream from the ccpA gene, which encodes a protein required for catabolite repression of the amyE (alpha-amylase) gene. The acsA and acuABC genes are divergently transcribed, with only 20 bp separating the -35 sequences of their promoters. Expression of t...

متن کامل

Evaluation of Lead (Pb) Effects on Laccase Enzyme Activity in Bacillus Subtilis WPI

Aim and objectives: Lead is one of the most important environmental pollutants that plays a significant role in increasing the stability of some other pollutants through changing the microbial profile of soil.  Bacillus subtilis WPI is one of the most abundant bacteria existing in the wastewater. Due to the presence of laccase enzyme in this bacterium, it can facilitate the decomposition proces...

متن کامل

Characterization of a novel spermidine/spermine acetyltransferase, BltD, from Bacillus subtilis.

Overexpression of the BltD gene in Bacillus subtilis causes acetylation of the polyamines spermidine and spermine. BltD is co-regulated with another gene, Blt, which encodes a multidrug export protein whose overexpression facilitates spermidine export [Woolridge, Vazquez-Laslop, Markham, Chevalier, Gerner and Neyfakh (1997) J. Biol. Chem. 272, 8864-8866]. Here we show that BltD acetylates both ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 190 14  شماره 

صفحات  -

تاریخ انتشار 2008